By
Prof Thomas Bock
Chair for Building Realisation and Robotics, Technical University of Munich
Abstract
Automation and robotics has been regarded as one of the leading areas of innovation in construction, with regard to the improvement of the industry. Research has been conducted for decades, and new automation and robotics technologies continue to be developed for the general manufacturing industry as well as for the construction industry. In the meantime, cities, especially in the developing world, are facing unprecedented issues as a result of economy shifts, demographic change, and environmental pressures. These issues include but are not limited to population aging, labor shortage, land shortage, lack of adequate infrastructures, and environmental challenges. In the foreseeable future, automation and robotics in construction will provide a new paradigm to tackle these serious issues in the process of urban transformation. Based on the latest developments and trends in construction automation and robotics, an innovative strategy for the improvement of corporate transformation can be developed in various technological dimensions. There are four main automated and robotics technology categories which can be considered for achieving this strategy in the design, construction, and maintenance phases of urban transformation, including (1) robotic industrialization; (2) construction robots; (3) site automation; and (4) ambient integrated robotics. Specifically, robotic industrialization usually implies the application of automation and robotics for manufacturing customized and prefabricated building components and modules. Construction robots refers to single-task construction robots which can be used for a variety of tasks ranging from welding, facade painting, interior finishing to inspection, maintenance and deconstruction. Site automation, also known as automated/robotic on-site factories, extends the new technologies of building component prefabrication and construction robots to clean, safe, quiet, and highly efficient on-site structured environments and on-site automated factories, handling construction, reconfiguration, and deconstruction. Ambient integrated robotics is the new approach for supporting people’s activities of daily living, such as living, working, playing, and rehabilitating, with integrated sensing and robotics technologies in living environments. There is a complexity within the corporate transformation, which includes the design, construction, and maintenance of urban built environment (e.g. housing, office, high-rise complex, factories, public buildings and institutions, etc.), the corresponding urban infrastructures (e.g. public spaces, roads, bridges, tunnels, solar farms, wind farms, etc.), as well as the related human activities (e.g. urban manufacturing and agriculture, logistics, activities of daily living, transportation, etc.). In all these levels of urban transformation, construction automation and robotics will play a crucial role, especially in the context of aging society. As a result, in the future urban design, construction, and maintenance processes, the application of construction industrialization and robotics will create a promising opportunity to achieve not only cleaner construction sites, improved construction quality, increased construction efficiency, and reduced amount of construction wastes in the urban context, but also social justice and well-being of all members of society.
Date : 11 January 2018, Thursday
Time : 11:00 am – 12:00 noon
Venue : Room 3598 (Lift 27/28)
The Hong Kong University of Science and Technology
Clearwater Bay, Kowloon
For enquiries, please contact Ms Rebecca Yau at 2358 7164